On approximation numbers of Sobolev embeddings of weighted function spaces

نویسنده

  • Leszek Skrzypczak
چکیده

We investigate asymptotic behaviour of approximation numbers of Sobolev embeddings between weighted function spaces of Sobolev–Hardy–Besov type with polynomials weights. The exact estimates are proved in almost all cases. © 2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gelfand and Kolmogorov numbers of Sobolev embeddings of weighted function spaces

In this paper we study the Gelfand and Kolmogorov numbers of Sobolev embeddings between weighted function spaces of Besov and Triebel–Lizorkin type with polynomial weights. The sharp asymptotic estimates are determined in the so-called non-limiting case. © 2011 Elsevier Inc. All rights reserved.

متن کامل

Publications, Sorted by Subject

[4] D. Haroske. Some logarithmic function spaces, entropy numbers, applications to spectral theory. [9] D. Haroske and H. Triebel. Entropy numbers in weighted function spaces and eigenvalue distribution of some degenerate pseudodifferential operators I. [10] D. Haroske and H. Triebel. Entropy numbers in weighted function spaces and eigenvalue distribution of some degenerate pseudodifferential o...

متن کامل

Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights.∗

We study compact embeddings for weighted spaces of Besov and TriebelLizorkin type where the weights belong to Muckenhoupt Ap classes. We focus our attention on the influence of singular points of the weights on the compactness of the embeddings as well as on the asymptotic behaviour of their entropy and approximation numbers.

متن کامل

Logarithmic Sobolev Spaces on R N ; Entropy Numbers, and Some Application 4 Applications 37 Logarithmic Sobolev Spaces on R N ; Entropy Numbers, and Some Application

In 14] and 11] we have studied compact embeddings of weighted function spaces on R n , p 2 (R n), s1 > s2, 1 < p1 p2 < 1, s1 ? n=p1 > s2 ? n=p2, and w(x) of the type w(x) = (1 + jxj) (log(2 + jxj)) , 0, 2 R. We have determined the asymptotic behaviour of the corresponding entropy numbers e k (idH). Now we are interested in the limiting case s1 ?n=p1 = s2 ?n=p2. of the so modiied embedding idH;a...

متن کامل

Randomized approximation of Sobolev embeddings, II

We study the approximation of Sobolev embeddings by linear randomized algorithms based on function values. Both the source and the target space are Sobolev spaces of non-negative smoothness order, defined on a bounded Lipschitz domain. The optimal order of convergence is determined. We also study the deterministic setting. Using interpolation, we extend the results to other classes of function ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2005